
I Scheduling in the Face of Uncertain Resource
cAawh&L=y

Jeremy Frank and Richard Dearden*

{frank,dearden}Qernail . a rc .nasa.gov
Computational Sciences Division

NASA Ames Research Center, MS 269-2
Moffett Field, CA 94035

Abst rac t . We discuss the problem of scheduling tasks that consume a
resource with known capacity and where the tasks have varying utility.
We consider' problems in which the resource consumption and utility of
each activity is described by probability distributions. In these circum-
stances, we would like to find schedules that exceed a lower bound on
the expected utility when executed. We first show that while some of
these problems are NP-complete, others are only NP-Hard. We then
describe various heuristic search algorithms to solve these problems and
their drawbacks. Finally, we present empirical results that characterize
the behavior of these heuristics over a variety of problem classes.

1 Introduction

In this paper we discuss scheduling problems for tasks that use quantities of
consumable resources. Traditional scheduling problems consider tasks that have
known resource consumption and known utility. However, we often encounter
problems in which the resource consumption of a task is not known exactly, and
instead we have only a probability distribution over resource use. For example,
consider a scenario in which a remote sensing platform must analyze a set of data
from different events that it has recieved. The utility of each event is unknown,
as is the total power required to perform the analysis. Time is also limited, as
new events will occur. The task is to schedule the analysis steps in order to
maximize the expected utility.

Due to the uncertainty of the resource consumption, some scheduled tasks
may not actually be performed when a schedule is executed. If we amume that
we have accurate knowledge of the distribution of resource consumption and job
utility, we can compute the expected utility of a schedule by accounting for both
the uncertain resource consumption and utility. Under these circumstances, we
can either find a schedule that maximizes the expected utility, or find a schedule
whose expected utility exceeds a lower bound. We are also interested in cases
where solving the decision problem exactly may be impossible due to the amount

* Research Institute for Advanced Computer Science

2

of time required. This is often the case in on-board planning that is tightly

The paper is organized as follows. In $2 we present both theoretical and em-
pirical results on the problem of scheduling tasks that have uncertain resource
consumption, utility, or both. Initially, we consider the case of consumable re-
sources only. We then show how to extend the results to reusable resources, such
as power, and replenishable resources, such as fuel. Finally, we show that the
crucial aspect of this problem is the uncertainty in resource consumption; prob-
lems in which the resource consumption is known and the utility is probabilistic
are trivially reducible to the Knapsack problem.

The resulting problems are quite difficult to solve, and often the solution
cost is higher still because of the need to do Monte-Carlo sampling to com-
pute the convolution of probability distributions. Because of this cost and be-
cause of our interest in performing scheduling in time-limited and computational
resource-bounded environments, in $3 we investigate heuristics for greedy search
algorithms to solve these problems. We first describe some likely heuristics, and
discuss drawbacks to them. We then perform an empirical study on simple ver-
sions of the problem. Our aim is to explore the space of problem features and
possible heuristic approaches to the problem. We discuss the results of these
investigations in $4. In $5 we describe some related work, and in $6 we conclude
and discuss future work.

integrated with plan execution and limited by resource utilization /I, 2).
-

2 Theory

We begin with some informal definitions. A consumable resource is one that can
be depleted but not renewed. A replenishable resource is a resource that can be
depleted and renewed by different activity. A reusable resource is used for the
duration of an action and returned when the action completes. Furthermore,
we assume that activities consume resources when they begin execution; this
is a bounding above approximation, but is useful in many circumstances, such
as power use or block memory allocation. Similarly, if an activity replenishes a
resource, we assume that the resource is replenished at the end of the activity.
This defines the mapping from activities to events, and allows us to consider
only the sequencing of the events of any activities that affect the level of the
resource. In the case of consumable resources, there will only be one such event
per task, while in the case of replenishable or reusable resources there may be
two such events per task, one that consumes a resource and another that returns
the resource.

In this section we describe a total of 4 problem classes. Problems are distin-
guished based on whether the resource is consumable or replenishable. We use an
event based representation instead of an action based representation, since the
case of reusable resources is subsumed by the more general case of replenishable
resources.

Problems are also distinguished based on whether the schedule is forced to
be a permutation of events, or whether the schedule is allowed to be a partial

f

3

order of events. This distinction is motivated by recent results that show then
it is possible to validate schedules consisting of a partial order of events when
resource consumption isknown i3j. It turns out that the distinction matters
when applied to problems with uncertain resource consumption.

We will now introduce some notation. A scheduling problem consists of a
set of events, J , that consume a set of resources, R = R1 ... Ri. Let Mi be
the maximum amount of resource R, available at any time (i.e. it’s capacity);
without loss of generality let the minimum amount of resource available a t any
time be 0. We will denote a schedule by T . We will denote the xth event in a
schedule by r2. Let j be an event that modifies a resource R. Let P3(R) be the
probability distribution for the amount of resource R consumed by event j. Let
A2,= (R) be the probability distribution over the amount of resource consumed
after the execution of the xth event in schedule T conditioned on the successful
execution of all activities. Thus, Ao,=(R) is the probability distribution over the
initial resource distribution and A,,,(R) is the convolution of Ao,?, and Py,.,
for all y _< x subject to the condition that the events succeed. Let &,(R)
be the probability distribution over the amount of resource consumed after the
execution of the x th event in schedule x conditioned on the successful execution
of activities l . .x - 1. Let Pj(U) be the probability distribution for the utility of
job j. The task is to find a permutation of the events in J such that the expected
utility of the schedule exceeds a bound U*. In order to compute the expected
utility, we need a model of task execution that defines job failure. We assume
that if the resource used by the task is exhausted by the task that it fails, and
provides no utility. Similarly, if a task requires a resource that is exhausted, it
provides no utility upon execution.

-

2.1 Consumable Resources

We will now consider the case of consumable resources, that is, resources that
are consumed by tasks and never returned or replenished. For now, we assume
events have no absolute or relative temporal constraints. We also assume that
the consumption of each event is determined only when the event is executed.
Finally, we initially assume that events must be totally ordered, but we will
consider the implications of relaxing this assumption. Thus, a schedule T is a
total order of the events. Our goal is to find a schedule whose expceted utility
exceeds a bound B which is an input to the problem. We refer to this problem
as the Uncertain Consumable Resource Scheduling Problem (UCRSP).

Initially, we will assume that there is only one resource R with maximum
capacity R. We will also assume without loss of generality that the probability
that there is less than 0 resource initially available is 0. The expected utility is
computed as follows: for each job in the permutation, convolve the probability
distributions of the resource consumptions of the events that have executed
to determine the probability distribution over the remaining resource amount.
Next, determine the probability that the amount of resource remaining is greater
than or equal to zero. This is the probability that the task succeeds based on
its modification of resource R. We will denote the probability that task r2 = j

4

succeeds by S2,=(R), which is simply the probability that there is some resource

now compute the expected utility of the job, which is simply (Sz,T)(EPTz (U)) .
Thus, the expected utility of schedule 7r is

I -mmurE--e. we can
. .

I
n

I Theorem 1. UCRSP as in /VP.

Proof. First, note we only need to convolve a linear number of distributions
and compute a linear number of event utilities to compute the schedule utility.
The multiplications and sums in the formula presented above are all polynomial
time operations. All that remains is showing that the convolution operation is a
polynomial time operation. In the worst case, we can do each convolution using
Monte Carlo Integration, which takes constant time for a fixed error [4].

Theorem 2. UCRSP is NP-Hard.

Proof. We will reduce the Knapsack problem to UCRSP. This problem consists
of jobs with fked resource consumption and utility, where the task is to find a
partition of the items into those in the Knapsack and those not in the Knapsack,
such that the Knapsack capacity is obeyed and the utility of the items in the
Knapsack exceeds a bound. Thus, a Knapsack problem is simply a UCRSP where
there is no uncertainty on the resource consumption, utility or the initial resource
amount. A Knapsack item j * = (r*,u*) where T* is the capacity and u* is the
utility. Thus, we map j * to a UCRSP event j with Pj(R) = (p(w) = 1) and
Pj(U) = (p(u*) = 1). The initial amount of resource R in the U C W P is the
bound on the Knapsack size R*. The utility bound of the Knapsack is mapped
to the expected utility bound of our problem. This mapping is easily seen to be
a linear time mapping.

Now consider a schedule 7r that satisfies the expected utility bound of the
UCRSP. The job failure model provides no utility to any job whose resource con-
sumption would exceed the resource capacity. Any permutation can be mapped
into a partition of jobs by the following linear time procedure: For any event j
having a non-zero utility in 7r , the corresponding j * is in the Knapsack, and all
other events are not in the Knapsack. Since all j in the UCRSP, the only possible
way for an event j to contribute zero utility is for the event’s resource consump-
tion to exceed the resource bound. Thus, the set of Knapsack items must obey
the Knapsack constraint. Further, by construction of the UCRSP, each event
j that contributes utility is guaranteed to contribute all of is utility, since all
such events execute with probability 1. Thus, the set of Knapsack items is also
guaranteed to exceed the desired utility bound. It is clear from the simplicity of
this mapping that the expected utility of the transformed job is the value of a
solution to the Knapsack. Furthermore, a solution to the UCRSP is a solution
to the Knapsack problem. Thus, UCRSP is NP-Hard.

8

5

Corollary 1. UCRSP is NP-Complete.

and preserve NP-completeness, by aeans of a reduction from UCRSP without
temporal constraints. The only additional machinery needed is to observe that
we can validate the temporal constraints in polynomial time using the results of
Dechter, Meiri and Pearl [5] .

Finally, we observe that scaling the UCRSP up to multiple resources does
not increase the difficulty of the problem. Suppose there are multiple resources,
R, ... R,. We now need the probability that task j succeeds given the state of all of
the resources, which we denote S z , K (R) , which is simply n, Sz,K(Rz). Using this
value, compute the expected utility of the job, which is simply Sz,K(R)(EP, (U))
. The expected utility is

!. f u & e = & s e z 4 e ; C c h ~ M ~ ~ f r \ S P -

n

i= 1

Now let us consider some relaxations. The first relaxation is to allow two
events to be scheduled at exactly the same time. In this case, we have to mod-
ify the task execution model, and thus the failure model. One option is the
"conservative" model, in which two events scheduled simultaneously result in
a single resource allocation. In this case, if the joint resource request exhausts
the resource, both tasks fail. Under these assumptions, the problem is still in
NP. However, this model is unlikely to be realistic, so we do not consider it of
interest.

An alternative is to assume that two events scheduled simultaneously are
executed in arbitrary order. Thus, it is equiprobable that either event occurs first.
In this case, the problem is no longer known to be in NP. The reason is that the
certificate, a set of events such that the execution order is not determined, may
not be verifiable in polynomial time. Consider an arbitrary set of simultaneous
resource allocations. Is there a permutation of this set that exceeds a utility
bound U*? This is simply a version of UCRSP, which we have just shown is in
NP under the assumption that we enforce a permutation of event occurences.
Thus, if P # AfP, then UCRSP with the relaxed certificate and the liberal event
execution model is not in NP.

The second relaxation is to permit the scheduler to return a partial ordering
of the events rather than a total ordering. It is easy to see that this puts us in
the same position as allowing two or more simultaneous events in a schedule. We
can no longer guarantee that a schedule is a solution in polynomial time, because
the validatation problem requires solving an NP-complete problem. Note that
there is an additional complication, which is determining the probability of any
permutation of the unordered events when computing the expected utility.

2.2 Replenishable Resources

Now let us consider the situation where resources are replenishable. We also
begin with the assumptions that there are no temporal constraints, and that

6

all events must be totally ordered in a schedule. Both of these assumptions will
be relaxed in turn. We refer to this problem as the Uncertain Replenishable
Resource Scheduling Problem (URRSP).

When computing the expected utility of a schedule, we must compute the
probability that tasks fail because they allocate too much resource, as was true
with consumable resources. In the case of replenishable resources, we must also
compute the probability that tasks produce too much of resource R. Note that
this is admirably handled by the fact that the convolution of the resource distri-
butions is well defined for both increasing and decreasing the amount of resource
available after event execution.

As before, we will denote the probability that task x, = j succeeds S,,,(R),
which is simply the probability that there is neither too much nor too little
resource remaining after the execution of the job at position x in schedule T.
Again, this is Jf&,,(R). Using this value, we again can compute the expected
utility of the job, which is simply (Sz,,)(EP,,(U)) . Thus, the expected utility
of x is

The generalization to multiple resources is also straightforward; s,,, (R) =

Theorem 3. URRSP is in NQ.
Proof. As we saw for UCRSP, the expected utility computation only requires
convolutions, additions and sums, all of which are accomplished in polynomial
time.

Theorem 4. URRSP is NP-Hard.

Proof. We reduce the UCRSP to the URRSP by observing that a UCRSP is a
URRSP with no events that produce the rr osource.

We observe as before that adding temporal constraints preserves n/P-completeness
using the same argument we used for the UCRSP.

We now consider relaxing the assumptions on the total ordering of events
in the schedule. Just as before, schedules are no longer verifiable in polynomial
time if we allow events to be simultaneous, or if we are forced to try and verify
schedules where sets of events are unordered.

Finally, we must say a few words about the distinction between renewable re-
sources and reusable resources in the context of uncertainty. A reusable resource
is one that is allocated by an activity for a period of time, then returned for other
activities to use. Reusable resources can be modeled using renewable resources
quite easily; an event that consumes the resource represents the reusable activity
start, while an event that represents the replenishment represents the end. The
replenishment is constrained to replenish the same amount of resource that the

7

start event used. This causes a minor problem in modeling for the case of uncer-
tain resource impacts; the underlying events must be constrained so that there is
no uncertainty in the amount or replenishment 01 me resources. i n e compiexlty
results are identical as for the case of URRSP. However, the underlying problems
are different enough that a different representation and heuristics may be useful
when solving the problems.

-_

2.3 Uncertain Utility is Uninteresting

As a final point, we note that the interesting aspects of these problems are the un-
certainty in the resource consumption. First, consider the problem of uncertainty
in the utility with certainty in the resource consumption and no temporal con-
straints. The problem now is identical to the Knapsack problem. The task is to
find those tasks that can be executed (i.e. put in the Knapsack) whose expected
utility exceeds a bound. From probability, E(P’(U)Pk(V)) = EP’(U)+EPk(U),
so this is simply another Knapsack problem. The problem with temporal con-
straints added simply limits the tasks that can simultaneously be in the Knap-
sack. Another aspect of the problem with uncertain resource consumption that is
of interest is that tasks in a schedule can be partitioned into roughly 3 sets: those
guaranteed to execute, those guaranteed not to execute, and those that may exe-
cute if tasks scheduled earlier do not overconsume (or overproduce) the resource.
This is a more interesting problem than the traditional scheduling problem with
job utility, where tasks are either accepted or rejected. It is not possible to reject
tasks out of hand until the resource is exhausted with probability 1.

2.4 Summary

In summary, the problem of finding totally ordered schedules of activities with
uncertain resource impact and uncertain reward such that the expected utility
exceeds a bound is NP-complete. However, the problem of producing a flexible
job ordering is not in NP if P # NP because the problem of validating the
flexible schedule is itself an NP-complete problem. This is in stark contrast to
the case of scheduling jobs whose resource consumption is known for certain l .

Figure 1 summarizes these results. Note that we have omitted the results as-
suming the conservative event execution model where simultaneous events make
a joint resource demand and the simple version of the problem with uncertainty
only in the utility of the events.

3 Practice

The above results place us in the unenviable position of coming up with algo-
rithms and heuristics that are likely to perform well on this problem. We have

Note that the reference is for non-rejectable jobs without utility. As long as jobs are
definitely included or not included in a schedule, the exact order of the jobs can be
left up in the air and certificates can still be validated in polynomial time for the
case of scheduling jobs such that the reward exceeds a bound

Fig. 1. Complexity of various problems of scheduling with uncertain resource consump-
tion.

the usual panoply of choices; constructive search algorithms driven by heuris-
tics or local search algorithms driven by gradients and neighborhoods. As we
mentioned before, we are currently interested in fast approximation algorithms
for on-board scheduling. In the following sections, .we will focus on heuristics to
drive greedy sampling approaches.

3.1 Heuristics and their Discontents

In this section we describe some heuristics that might be used to drive solutions
to this problem. For the following discussions we adopt the following notation.
Suppose we have built a schedule prefix rZ. Now suppose that the jobs left are
denoted by H and that the current utility is uT,. Recall that the distribution of
the remaining resource amount after z executes is denoted zz ,T(R) .

Intuitively, since our task is to maximize the expected utility of the schedule,
we could employ a heuristic that chooses the next event by greedily maximizing
the utility for all remaining events. Since the prefix 7rZ is fixed, this policy greedily
maximizes the utility of the resulting schedule. We can compute the utility uhof
each h E H given &,=(R). The heuristic, then, would select h'luhf 2 u h . Note
that this heuristic has an obvious generalization to multiple resources.

This heuristic doesn't work well for a situation in which the expected resource
consumption conditioned on the event succeeding is larger for the event whose
utility is higher. So even though the expected value of the schedule looks better
for this event alone, looking ahead would reveal that it is better to take the event
with lower utility. For example, suppose we have a problem instance where the
resource R has 3 units initially, and the following events:

Event1 Pj(R) IPj(U)lUj

1 IU 11.5. 4.511 3 11.5

In this case, the heuristic would have us choose event 1 first; even though it
has a non-zero chance of failure, its expected utility is 1.5, while the expected
utility of the other events is 1. However, it's clear that any permutation of events
2,3 and 4 will exceed the expected utility of event 1; we can put event 1 last
and get a schedule of higher expected utility than any schedule with event 1

9

scheduled eariler. Furthermore, this heuristic fails to distinguish the case where
two jobs have the same expected utility: for example,

-._____

In this case, if there are more jobs, the downstream impact of the higher
resource consumption on the schedule might warrant choosing event 1 first, even
though event 2 has the higher utility. We shall call this heuristic E.

Suppose we choose the event that minimizes the expected resource con-
sumption over all events without considering the state of the resource, i.e.
h’lEPh1 (R) 5 EPh(R). Again, this has the result that the resource consumption
of the resulting schedule is minimized, and consequently, maximizes the proba-
bility of success of the resulting schedule. This heuristic doesn’t work well for a
problem that is only a slight modification of the previous problem: again, let the
resource R have initial endowment of 3 and change the event data as follows:

U [0.5, 11

It is now better to schedule event 1 first because scheduling the lower resource
consuming events first does not overcome the high utility of the first event.
Furthermore, this heuristic does not have an obvious generalization to many
resources; it may not be possible to minimize the expected resource consumption
on all resources simultaneously. We shall call this heuristic R.

A related heuristic contemplates the resource impact assuming that an event
succeeds, that is, does not deplete the resource. We choose the event that min-
imizes the expectation over these distributions, i.e. h’lE(xT,z(R)17r2: = h’) 5
E(&,z(R) l~z = h). This heuristic will try and leave as much resource left as
possible conditioned on event execution success. However, it does so by ignoring
the event utility. It also doesn’t generalize well to multiple resources. Finally,
it may require a more complex computation to compute and thus may not be
worth the cost. We shall call this heuristic S.

4 Empirical Results

To test the performance of the heuristics we described above, we performed
a number of experiments on relatively simple, random domains. We considered
problems with between ten and 20 jobs to be scheduled, and with approximately
half that many constraints. Each of the jobs had a Gaussian distribution for the
quantity of resources it consumed, with a range of values for the means. We
considered problems in which the jobs had uniformly low variance, uniformly
high variance, and random variance, and we varied the resource limit between

10

ten percent and 50 percent of the expected resource requirement for all the jobs.
For each setting of these parameters, we generated 100 problems, and ran each
of the heuristics on each problem.

We evaluated the heuristics by using them greedily to select a single valid
schedule. We then computed the expected value of that schedule as shown in
Equation 1. The performance of the three heuristics was consistent over all sizes
of problems and resource limits, so we show the results for a single setting of those
parameters in Table 1. In this case, the problems had 20 jobs, ten constraints,
mean resource usages for the jobs uniformly distributed between ten and 50,
job utilities uniformly distributed between one and ten, and a resource limit of
60 (ten percent of the expected resources required by all the jobs). We were
particularly interested in the effects on the algorithms of changing the variance
of the resource usage of the jobs, so we present results for three different resource
usages.

Job Variance Range Heuristic Mean schedule value Variance
E 20.35 26.20

0.1-1.0 R 18.52 33.92
S 17.53 32.45
E 13.88 32.88

0.1-0.2 R 11.71 45.39
S 11.18 26.55
E 13.91 37.71

0.8-1.0 R 11.72 44.91
S 11.63 43.91

As the table shows, the E heuristic (choose the job that maximizes the ex-
pected utility of the schedule built so far) considerably outperforms the other
two on essentially all these problems. The only exception is on a few very small
problems on which both E and R are finding optimal, or very close to optimal
schedules.

In $3.1 we described an example of where the E heuristic performs badly
(the first table). This corresponds to problems where there is a strong correla-
tion between the resource requirements of a job and its utility. Intuitiion suggests
that this may be a fairly common situation, so we did some additional exper-
iments on problems with this property, as well as the opposite, where there is
anti-correlation between resource usage and utility. The anti-correlated case is
intuitively easy to solve as the jobs with high utility are cheap to perform, and
vice versa. The results of these experiments, with the variances ranging from 0.1
to 0.2, are shown in Table 2.

I

Problem Type Heuristic Mean schedule value Variance
E 13.88 32.88

Uncorrelated R 11.71 45.39
S 11.18 26.55
E 10.08 0.07

Correlated R 7.22 0.57
S 8.02 0.78
E 27.7360 50.03

Anti-correlated R 27.7364 50.04
S 23.64 51.13

11

As Table 2 shows, even in problems deliberately designed to exhibit charac-
teristics that make E perform badly, it still tends to outperform R and S. On
the anti-correlated (easy) problems R actually performed slightly better than E ,
but these results are not statistically significant. In fact, both heuristics produce
very similar schedules for these problems, and appear to perform very close to
optimal (on small problems we have computed the optimal for).

One problem with using the E heuristic is that it takes approximately 15
times as long to find a schedule as the other two, due to the complexity of the
Monte Carlo estimate of the value of the whole schedule at each step. As we said
in Section 2.1, the Monte Carlo estimate is necessary because we need to compute
the probability of success of each job, given that all previous jobs succeeded,
to compute the utility d a schedule. One possible approximation to this is to
ignore the condition that previous jobs succeeded, and instead use the probability
that the schedule up to a particular job will complete in the given amount of
resources. This is easily computed for Gaussian resource usage distributions as it
it simply the sum of the usages for the jobs, which is itself a Gaussian. However,
it overestimates the value of each schedule. Table 3 shows results on the same
set of problems using this approximation, again only for the low variance case.
There are two interesting results in this table. The first is that the approximation
actually beats E for uncorrelated problems, by a statistically significant amount.
We are currently investigating why this occurs, but our intuition is small jobs,
that is those that use few resources, gain more from the approximation than
large jobs, so it favours small jobs at the beginning of the schedule, which is
good for cases such as this with tight resource bounds. We are currently running
more experiemnts to test this hypothesis. The second interesting point is that
on the other problems, the approximation performs comparably to R, and is in
fact worse on anti-correlated problems. The computation time is still somewhat
larger (a factor of around 2) for the approximation, which suggests that there
is relatively little advantage to using the approximation over using R for many

12

Problem Type Heuristic Mean schedule value Variance
E 13.88 32.88

i Uncorrelated Approximation to E 16.07 26.75
R 11.71 45.39
E 10.08 0.07

Correlated Approximation to E 8.01 0.78
R 7.22 0.57
E 27.74 50.03

Anti-correlated Approximation to E 23.64 51.16
R 27.7364 50.04

problems. Again, we are currently conducting additional experiments to quantify
exactly when one heuristic should be preferred over the other.

5 Related Work

There has been considerable work on a variety of planning and scheduling prob-
lems with various assumptions of uncertainty and with various objective func-
tions. Early papers on this topic discuss the computational complexity of sim-
ple shop scheduling problems with exponentially distributed release times, due
dates, and durations, where the goal is to minimize the expected makespan of
the schedule or a weighted time objective [6,7]. One result of interest in [7] is
that minimizing the weighted sum of late jobs under randomly distributed job
characterisitcs is in F. At first glance this looks similar to the problems we de-
scribe; however, UCRSP and URRSP are diflerent because we impose a fixed
limit on the total resource use, which is equivalent to saying that the deadlines
of all jobs are fixed; we also impose precedence and resource constraints. A nice
extension to this work is the Time-Dependent MDP formulation of [8].

Other work discusses modification of standard algorithms like A* to work in
settings where job data is randomly distributed [9]. Additional work describes an
MDP-based approach to handling production scheduling where the job duration
and utility of each action is uncertain [lo]. Again, UCRSP and URRSP differ
from this problem in that they cannot be modeled as an MDP; the actual utility
of any action is a function of the resource state, which is a function of the
entire schedule to date, which violates the Markov property. FinalIy, the limited
amount of work on maximizing schedule utility under resource uncertainty in an
on-board setting does not handle the problem by posing it in the manner that
we have considered it here [2,1].

With respect to planning, many previous approaches also make Markov-like
assumptions about action failure [ll, 121. A recent exception is the work of [13], in
which the goal is to find contingent plans under conditions where the probability
of action failure depends on the state of a resource that is affected by the entire

13

plan prefix. Our work differs in that we limit ourselves to the case of scheduling;
this makes it tractable to compute the utility of actions, and allows us to provide

c o m p l e x l t y t s .
Finally, we should point out that the maximization of expected utility is a

global constraint unlike any considered by previous work in this area. Most such
constraints handle situations in which there is no uncertainty, and concentrate
on various types of constraint satisfaction. Thus, this paper should serve as a
challenge to members of the CP community to develop global constraints for
maximizing expected utility.

6 Conclusions and Future Work

We have described a series of problems involving scheduling under uncertainty of
resource consumption and event utility. We provide complexity results for these
problems, and demonstrate that different heuristics provide different results un-
der a variety of problem classes.

The results in this paper are given for general probability distributions, and
the experiments focus on one example, the Gaussian distribution. However, it is
important to determine whether the probability distributions for resource con-
sumption have an impact on the results. While it seems that the most important
feature may be the relationship between the relative means and variances of the
resource consumption and the utilities of the events, there may be significant
secondary effects due to the shape of the distribution. Thus, further empirical
and theoretical analysis is warranted.

A useful heuristic is a strict dominance criteria for eliminating some candidate
events from consideration as the next choice, such as those discussed in [9].
Suppose we have two events with the same resource consumption distribution but
different (known) utilities. Clearly it is better to choose the event of higher utility.
However, it is not clear how likely this is to happen in practice. Also, it is possible
that no single event will be strictly dominated by all other events, and thus makes
it even less likely that any reduction in the number of heuristic evaluations can
be done. Finally, dominance must be extended to the case of totally ordering
events with respect to uncertain resource consumption and utility to be generally
applicable.

We can imagine situations in which many tasks are identical. In this case,
the number of total schedules is smaller than N ! ; if there are k distinct classes
of tasks such that we have N total tasks, and ni of each task from i = l . .k , then
the total number of schedules is Suppose now that we have a set of jobs

such that some of them are not identical, but are very close to identical. Rather
than searching all possible permutations, it might be beneficial to cluster jobs
and reduce the search space. We would like to find a bound on the error in the
expected utility under approximations like this. Unfortunately, it seems difficult
to do this. It is also uncertain if there are classes of problems that have this
property.

N ! n;=,

14

We can form various combinations of the heuristics by forming linear combi-
nations and using one as the tie-breaker for another and so on. Some promising

I combinations are as follows:

- Sort by E first, then by R.
- Sort by E first, then by 5’.
- Linear combination of E and R.
- Linear combination of E and S.

Linear combination requires that we convert the heuristics from a relative rank-
ing scheme into a function. This can be done using the utility or the expectation
as the basis of the heuristic, and dividing the result for each event by the sum.
Bias functions can also be used to emphasize the best choices if .desired [14].

References

1. Khatib, L., Frank, J., Smith, D., Morris, R., Dungan, J.: Interleaved observation
execution and rescheduling on earth observing systems. In: To Appear, Proceedings
of the ICAPS Workshop on Plan Execution. (2003)

2. Shriver, P., Gokhale, M., Briles, S., Kang, D., Cai, M., McCabe, K., Crago, S.,
Suh, J.: A power-aware, satellite-based parallel signal processing scheme. In: To
Appear, Proceedings of the DARPA Power Aware Computing Conference, Kluwer

3. Muscettola, N.: Computing the envelope for stepwise-constant resource allocations.
Proceedings of the 9th International Conference on the Principles and Practices of
Constraint Programming (2002)

(????)

4. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. J. Wiley (1964)
5. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelli-

gence 49 (1991) 61-94
6. Pinedo, M.: On the computational complexity of stochastic scheduling problems.

In Dempster, M., Lenstra, J.K., Kan, A.R., eds.: Deterministic And Stochastic
Scheduling. Springer Verlag (1982) 355-365

7. Pinedo, M., Schrage, L.: Stochastic shop scheduling: A survey. In Dempster, M.,
Lenstra, J.K., Kan, A.R., eds.: Deterministic And Stochastic Scheduling. Springer
Verlag (1982) 181-196

8. Boyan, J., Littman, M.: Exact solutions to time-dependent MDPs. In: NIPS.

9. Wurman, P., Wellman, M.: Optimal factory scheduling using stochastic dominance
a*. In: Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence.
(1996)

10. Schneider, J., Boyan, J., Moore, A.: Value function based production scheduling.
In Shavlik, J., ed.: Proceedings of the 15th International Conference on Machine
Learning, Morgan Kaufmann, San Francisco, CA (1998) 522-530

11. Kirman, J., Nicholson, A., Lejter, M., Dean, T., Jr., E.S.: Using goals to find
plans with high expected utility. In: Proceedings of the 2d European Workshop on
Planning. (1993)

12. Onder, N., PoIIock, M.: Conditional probabilistic planning: A unifying algorithm
and effective search control mechanisms. In: aaai99. (1999)

(2000) 1026-1032

15

13. Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D., Washington, R.: Incre-
mental contingency planning. In: Submitted to ICAPS Workshop on Planning
U n-derthcertanty-@JU.Y,,

14. Bresina, J.: Heuristic-biased stochastic search. In: Proceedings of the Thirteenth
National Conference on Artificial Intelligence. (1996)

._______..

